universität wien

Analysis of Field-Effect Biosensors using Self-Consistent 3D Drift-Diffusion and Monte-Carlo Simulations

S. Baumgartner¹, M. Vasicek¹, N. Tassotti¹, A. Bulyha¹, C. Heitzinger^{1,2}

¹Wolfgang Pauli Institute and Department of Mathematics, University of Vienna, Austria ²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

Motivation

- Field-effect biosensors provide high sensitivity and a direct electrical readout [1]
- Influence of biomolecules on the charge transport or binding of molecules to the inferface are not satisfactorily described yet
- Mathematical modeling of the charge transport with partial differential equations leads to predictive and realistic simulations

Model

In order to quantify the screening of the partial charges of the biomolecules as realistically as possible and to

$V = V_E$ or $\nabla_v V = 0$ **Aqueous Solution** Ω_{Lia} Poisson-Boltzmann $\nabla_{v}V = 0$ anowire Surface MC Oxide - Poisson $V = V_D$ $V = V_S$ $n = n_S$ $n = n_D$ $p = p_S$ Source Drain $p = p_D$

- gain a deeper quantitative understanding of the sensing mechanism, we developed the following model [2].
- Three material dependent systems of partial differential equations describe the electric potential and the charge carriers (see Fig. 1):
 - Drift-diffusion equations for the charge transport in the nanowire

 $-\nabla \cdot (\varepsilon_{Si}\nabla V) = q(p - n + C_{dop})$ $\nabla \cdot (D_n \nabla n - \mu_n n \nabla V) = R$ $\nabla \cdot (-D_p \nabla p - \mu_p p \nabla V) = -R$

– A **Poisson-Boltzmann** model for the aqueous solution

 $-\nabla \cdot (\varepsilon_{Liq} \nabla V) = \sum_{\sigma \in \{-1,1\}} \eta \, \sigma \mathrm{e}^{-\sigma \beta V},$

- The **Poisson equation** for the dielectric layer
- Metropolis Monte-Carlo simulations in the constant-voltage ensemble are computed to obtain the charge concentration in the biofunctionalized surface layer [3].

Fig. 1. Left: schematic cross section of the nanowire biosensor. The silicon nanowire is described by the driftdiffusion model, while the interface and the surface layer in the electrolyte are modeled by a Monte-Carlo approach. Boundary conditions are also indicated. Right: a nanowire functionalized with ssDNA as probes without any target molecules (top) and a nanowire functionalized with ssDNA with a target ssDNA strand (dsDNA, bottom).

• A homogenization method solves the multiscale problem of the biomolecules in the Angstrom range and the nanowire length in micrometer range [4]. Therefore, the continuity equations at the interface are replaced by jump conditions including the surface-charge density α and the dipole-moment density γ :

 $V(0+,y,z) - V(0-,y,z) = \frac{\gamma}{\varepsilon_{Liq}}$ $\varepsilon_{Liq} \nabla_x V(0+,y,z) - \varepsilon_{Ox} \nabla_x V(0-,y,z) = -\alpha(y,z)$

Numerical Methods

- The Scharfetter Gummel iteration scheme in connection with the finite volume method for the driftdiffusion equations
- The finite volume method for the Poisson-Boltzmann equation

 $V_{G} = 0V$ $V_{G} = 0V$ $V_{G} = -0.4V$ $V_{G} = -0.4V$

and simulated data.

- A FETI (finite element tearing and interconnecting) method for the parallelization of the simulator
- A Metropolis Monte-Carlo algorithm in the constant voltage ensemble for the computation of the surface charges

Results

- Sodium Na⁺ and chloride Cl⁻ ion concentration profiles are calculated with a Metropolis Monte-Carlo algorithm in the constant voltage ensemble with respect to the electric potential at the surface (see Fig. 2).
- Many parameters can be adjusted in order to obtain reliable and realistic results. Some of them are
- the electrolyte potentials,
- the pH value,
- the angle of the DNA strands to the surface,
- and the interspace between the DNA strands.
- The interface conditions, the **dipole-moment density** and the **surface-charge density**, are computed from the ion concentration profiles and are then implemented in the self-consistent loop of the Scharfetter Gummel iteration scheme (see Fig. 4).
- The electric potential and the charge carriers are obtained in a self-consistent loop. Current, current-voltage characteristics and the sensitivity of the sensor can be computed.
- Sensitivity simulations for different pH values show very good agreement with experiments of [5] and our model clearly outperforms analytical models based on [6] (see Fig. 3).
- The simulations of the electric potential and the charge carriers are in 3d and hence physical as well as geome-

Surface Voltage [V]

Fig. 4: Dipole moment density and

surface charge density.

Thickness [nm]

Fig. 5: Current change as a function of the nanowire thickness.

trical properties can be tested on their contribution to sensitivity [7]. We show in Fig. 5 that nanowire thickness for a 500nm long nanowire has an **optimal point of sensitivity** at 40nm. The molecules at the surface are dsDNA and ssDNA and the computed current of them is compared with a non-functionalized nanowire.

References

- [1] E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, and T.M. Fahmy. Label-free biomarker detection from whole blood. *Nature Nanotechnology*, 5:138–142, 2010.
- [2] S. Baumgartner and C. Heitzinger. Existence and local uniqueness for 3d self-consistent multiscale models of field-effect sensors. *Communications in Mathematical Sciences*, 23 pages, in print.
- [3] Alena Bulyha and Clemens Heitzinger. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces. *Nanoscale*, 3(4):1608–1617, 2011.
- [4] Clemens Heitzinger, Norbert Mauser, and Christian Ringhofer. Multiscale modeling of planar and nanowire field-effect biosensors. *SIAM J. Appl. Math.*, 70(5):1634–1654, 2010.

[5] X.P.A. Gao, G. Zheng, and C.M. Lieber. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. *Nano Lett.*, 10(2):547–552, 2010.

[6] P. Bergveld. Development of an ion-sensitive solid-state device for neurophysiological measurements, *IEEE Transactions on Biomedical Engineering*, 1:70–71, 1970.

[7] S. Baumgartner, M. Vasicek, A. Bulyha, and C. Heitzinger. Optimization of nanowire DNA sensor sensitivity using self-consistent simulation. *Nanotechnology, in review*, 2011.

The authors acknowledge support by the FWF (Austrian Science Fund) project no. P20871-N13 and by the WWTF (Viennese Science and Technology Fund) project No. MA09-028. This poster is based on work supported by Award No. KUK-I1- 007-43, funded by the King Abdullah University of Science and Technology (KAUST).

